Mevastatin blockade of autolysosome maturation stimulates LBH589-induced cell death in triple-negative breast cancer cells

نویسندگان

  • Zhaohu Lin
  • Zhuqing Zhang
  • Xiaoxiao Jiang
  • Xinhui Kou
  • Yong Bao
  • Huijuan Liu
  • Fanghui Sun
  • Shuang Ling
  • Ning Qin
  • Lan Jiang
  • Yonghua Yang
چکیده

Histone deacetylase inhibitors (HDACi) are promising anti-cancer agents, and combining a HDACi with other agents is an attractive therapeutic strategy in solid tumors. We report here that mevastatin increases HDACi LBH589-induced cell death in triple-negative breast cancer (TNBC) cells. Combination treatment inhibited autophagic flux by preventing Vps34/Beclin 1 complex formation and downregulating prenylated Rab7, an active form of the small GTPase necessary for autophagosome-lysosome fusion. This means that co-treatment with mevastatin and LBH589 activated LKB1/AMPK signaling and subsequently inhibited mTOR. Co-treatment also led to cell cycle arrest in G2/M phase and induced corresponding expression changes of proteins regulating the cell cycle. Co-treatment also increased apoptosis both in vitro and in vivo, and reduced tumor volumes in xenografted mice. Our results indicate that disruption of autophagosome-lysosome fusion likely underlies mevastatin-LBH589 synergistic anticancer effects. This study confirms the synergistic efficacy of, and demonstrates a potential therapeutic role for mevastatin plus LBH589 in targeting aggressive TNBC, and presents a novel therapeutic strategy for further clinical study. Further screening for novel autophagy modulators could be an efficient approach to enhance HDACi-induced cell death in solid tumors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gene Expression Changes in Pomegranate Peel Extract-Treated Triple-Negative Breast Cancer Cells

Background: Triple-negative breast cancer (TNBC) is treated with highly aggressive non-targeted chemotherapies. Safer and more effective therapeutic approaches than those currently in use are needed. Natural pomegranate peel extract (PPE) has recently been found to inhibit breast cancer progression; however, its mechanisms of action remain unclear. We hypothesized that transcriptional chan...

متن کامل

Cell Kinetic Study of Tamoxifen Treated MCF-7 and MDA-MB 468 Breast Cancer Cell Lines

Apoptosis could be a major mechanism of antitumor effect of tamoxifen. Therefore this study is designed to characterize the kinetic behavior of tamoxifen-induced apoptosis in the estrogen receptor positive (ER+) and negative (ER-) cell lines, MCF-7 and MDA-MB-468. Frequency of cell death was examined by trypan blue and acridine orange staining. Annexin V-Fluorescein/PI was used in flow cytometr...

متن کامل

The pan-histone deacetylase inhibitor LBH589 (panobinostat) alters the invasive breast cancer cell phenotype.

Triple-negative breast cancer (TNBC) is a very aggressive type of tumour and its aggressiveness is linked to E-cadherin downregulation. In estrogen-sensitive breast cancer, high levels of E-cadherin fit with high levels of ERα and MTA3 (a component of the transcription Mi-2/NuRD complex with intrinsic DAC activity). In TNBC the E-cadherin downregulation could be due to epigenetic silencing of t...

متن کامل

CASPASE DEPENDENT APOPTOSIS INDUCED BY CLADRIBINE IN THE ESTROGEN RECEPTOR NEGATIVE BREAST CANCER CELL LINE, MDA-MB468

The purpose of the present study is to investigate the cytotoxicity/apoptotic effect of 2-chloro-2′-deoxyadenosine, cladribine, (2-CdA) in the human breast cancer cell line, MDA-MB468 (estrogen receptor negative, ER−). MTT [3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H tetrazolium bromide] assay, annexin V-Fluorescein/PI and Hoechst 33258 staining were used to detect cytotoxicity and cell apopto...

متن کامل

1Hz 100mT Electromagnetic Field Induces Apoptosis in Breast Cancer Cells Through Up-Regulation of P38 and P21

Introduction: Breast cancer is the most common cause of cancer-related death among women. Recently, extremely low-frequency electromagnetic field (ELF-EMF) has been proposed as a new interfering agent with future therapeutic potentials. Many studies have revealed that cellular processes such as apoptosis in breast cancer are affected by ELF-EMFs. However, more researches are needed to clarify t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017